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We study condensation of trapped bosons in the limit when the number of par-
ticles tends to infinity. For the noninteracting gas we prove that there is no
phase transition in any dimension, but in any dimension, at any temperature the
system is 100% condensated into the one-particle ground state. In the case of an
interacting gas we show that for a family of suitably scaled pair interactions, the
Gross–Pitaevskii scaling included, a less-than-100% condensation into a single-
particle eigenstate, which may depend on the interaction strength, persists at all
temperatures.
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tions.

1. INTRODUCTION

Bose–Einstein condensation (BEC) is one of the most fascinating collective
phenomena occurring in Physics. More than three quarters of a century
after its discovery, the condensation of a homogeneous Bose gas remains as
enigmatic as ever, both experimentally and theoretically. Meanwhile, the
experimental realization of condensation in trapped atomic gases has
opened new perspectives for the theory as well. From the point of view of a
mathematical treatment, the trapped and the homogeneous systems are
quite different, mainly due to an energy gap above the—at most finitely
degenerate—one-particle ground state of trapped Bose gases, implying that
condensation occurs into a localized state. In the homogeneous gas the gap
above the ground state vanishes in the thermodynamic limit. This makes
condensation a subtle mathematical problem already in the noninteracting



system, and an unsolved problem in the presence of any realistic interac-
tion. The mathematical proof of condensation in a trap shows no compar-
able subtlety, although the gap endows the noninteracting gas with some
peculiar properties, and condensation into a localized state makes some
sort of scaling of the interaction unavoidable.

A recent important development in the theory of trapped gases was
obtained by Lieb and Seiringer. (1) For a dilute interacting gas, in the limit
when the particle number N tends to infinity and the scattering length a to
zero in such a way that Na is fixed, these authors proved a 100% BEC at
zero temperature into the Hartree one-particle wavefunction.

The aim of the present paper is to study BEC in deep traps, both in
the free and in the interacting cases. By a deep trap we mean a trap with an
unbounded potential such that the corresponding one-body Hamiltonian
H0 has a pure point spectrum and exp(−bH0) is trace class for any positive
b. Such a trap gives no possibility of escape to the particle through thermal
excitation. In Section 2 we prove a condition on the potential so that it
gives rise to a deep trap.

In Section 3 we deel with the noninteracting gas in the limit when the
particle number, N, tends to infinity. We show that asymptotically the total
free energy is N times the energy of the one-particle ground state, plus an
O(1) analytic function of b. There is no phase transition in any dimension
d \ 1, but the mean number of particles in excited states remains finite as
N goes to infinity, whatever be the temperature. So the density of the con-
densate is 1, condensation is 100% at all temperatures.

In Section 4 we use the results obtained for the noninteracting gas to
prove the continuity of the phase diagram as a function of the interaction
strength. In a first part, we define condensation into a one-particle state,
and show that it is equivalent to having the largest eigenvalue of the one-
particle reduced density matrix of order N. The second part of Section 4
contains the main result of the paper. Here we prove a theorem on
Bose–Einstein condensation in an interacting gas. In particular, for a non-
negative interaction we obtain that, if the expectation value of the
N-particle interaction energy taken with the ground state of the nonin-
teracting gas is of the order of N, the occupation of at least one of the low-
lying eigenstates of the one-particle Hamiltonian, which may depend on the
interaction strength, is macroscopic. This holds true in any dimension and
at any finite temperature. The result allows a finitely degenerate single-
particle ground state (bosons with spin) and is nonperturbative in the sense
that it does not depend on the size of the gap above the ground state. The
occupation of the subspace of one-particle ground states tends to 100%
with the vanishing interaction strength. In a corollary and in subsequent
remarks we describe a family of nonnegative scaled interactions to which

376 Sütő



the theorem applies. All these integrable pair interactions are weak, in the
sense that their integral vanishes as 1/N with an increasing number of
particles. Our examples include the Gross–Pitaevskii scaling limit in three
dimensions and the opposite of Gross–Pitaevskii scaling in one dimension.

2. ONE-BODY HAMILTONIAN FOR DEEP TRAPS

The one-particle Hamiltonian we are going to use is

H0=−
(

2

2m
D+V (1)

on L2(Rd), where the potential V is chosen in such a way that H0 has a
pure point spectrum with discrete eigenvalues of finite multiplicity and
e−bH0

is trace class, i.e., tr e−bH0
< ., for any b > 0. This condition ensures

the finiteness of the one-particle free energy at any finite temperature 1/b.
We will refer to such a Hamiltonian as a deep trap. For the sake of sim-
plicity, we shall also suppose that the ground state of H0 is nondegenerate,
so that the eigenvalues of H0 are

e0 < e1 [ e2 [ · · · . (2)

A large family of potentials corresponding to deep traps is charac-
terized by the following proposition.

Proposition 2.1. Let V: Rd
Q R be bounded below and suppose

that

lim
r Q .

ln(r/r0)
V(r)

=0 (3)

for some r0 > 0. Then tr e−bH0
< . for all b > 0.

Condition (3) is sharp in the sense that, as the proof will show it, a
central or cubic potential which increases logarithmically leads to an
exponentially increasing density of states and, therefore, a diverging trace
for small positive b. Intuitively, the assertion of the proposition holds true
because > exp(−bV) dr < . for any b > 0, but the connection is not
immediate. We present two different proofs: The first uses the path integral
representation of tr e−bH0

, while the second is based on a semiclassical
estimation of the eigenvalues.
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First proof. Given b > 0, fix a V0 > d/b. Let Vm=inf V(r) > − .. If
(3) holds for an r0 > 0 then it holds for any r0 > 0. Choose r0 so large that

V(r) \ Vm+V0ln
1
2
1 r

r0
+12 for all r ¥ Rd. (4)

By the Feynman–Kac formula, (2)

tr e−bH0
=F Or| e−bH0

|rP dr=F Pb
00(dw) F e−>b

0 V(r+w(s)) ds dr. (5)

The first integral in the right member goes over (continuous) paths w in Rd

such that w(0)=w(b)=0. Pb
xy(dw) is the conditional Wiener measure,

generated by − (
2

2m D, for the time interval [0, b], defined on sets of paths
with w(0)=x and w(b)=y. In Eq. (5) we have made use of the translation
invariance of Pb. Let

||w||b= sup
0 [ s [ b

|w(s)|. (6)

The integral over r can be split in two parts. First,

F
r < 2 ||w||b

e−>b
0 V(r+w(s)) ds dr [ e−bVmvd(2 ||w||b)d (7)

where vd is the volume of the d-dimensional unit ball. For r > 2 ||w||b, we
use (4) to obtain

V(r+w(s)) \ Vm+V0 ln
r+2r0

4r0
. (8)

After some algebra, this yields

F
r > 2 ||w||b

e−>b
0 V(r+w(s)) ds dr [

e−b(Vm − V0 ln 2)sd

bV0 − d
(2r0)d. (9)

Here sd is the surface area of the unit sphere in Rd. Putting the two parts
together,

tr e−bH0
[

e−b(Vm − V0 ln 2)sd

bV0 − d
12r0

lb

2d

+e−bVmvd2d F Pb
00(dw)(||w||b)d, (10)
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where we have substituted

F Pb
00(dw)=O0| e

b(
2

2m D |0P=l−d
b , (11)

lb=( `2pb/m being the thermal de Broglie wave length. The second term
on the right-hand side of (10) is finite: actually, every moment of the con-
ditional Wiener measure is finite. Indeed, from the estimate (see Eqs. (1.14)
and (1.31) of ref. 2)

Pb
00(||w||b > 4e) [

22+d/2

ld
b

(md+nd(e/lb)d − 1) e−pe
2/4l

2
b (12)

where md and nd depend only on the dimension d,

F Pb
00(dw)(||w||b)k [

22+d/2

ld
b

C
.

n=0
(n+1)k (md+nd(n/4lb)d − 1) e−pn2/64l

2
b < ..

(13)

This concludes the first proof.

Second proof. We start, as before, by fixing b > 0 and a V0 > d/b.
For the sake of convenience, now we choose r0 so that

V(r) \ Vm+V0 ln
1
2
1 r

`d r0

+12 for all r ¥ Rd. (14)

The expression in the right member can still be bounded from below, due
to the concavity of the square-root and the logarithm. With the notation
r=(x1,..., xd), we find

V(r) \ Vm − V0 ln 2+
V0

d
C
d

i=1
ln 1 |xi |

r0
+12 . (15)

Let

h0=−
(

2

2m
d2

dx2+
V0

d
ln 1 |x|

r0
+12 . (16)

Then

H0 \ Vm − V0 ln 2+ C
d

i=1
h0(i), (17)
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h0(i) acting on functions of xi, and

tr e−bH0
[ e−b(Vm − V0 ln 2)(tr e−bh0

)d. (18)

Let ln, n \ 0, be the eigenvalues of h0 in increasing order. From
Theorem 7.4 of ref. 3, in the case of a logarithmic potential, it follows that
any l ¥ [ln − 1, ln] satisfies an equation of the form

p(

2
1n+

1
2
2=F

X

0
`2m(l − v(x)) dx+O(l) (19)

where X is defined by v(X)=l. Dropping O(l), the solution is the nth
semiclassical eigenvalue according to the Bohr–Sommerfeld quantization.
For the true nth eigenvalue equation (19) yields, after substituting v(x)=
(V0/d) ln(|x|/r0+1),

ln=
V0

d
ln 1n+

1
2
2+O(ln ln(n+3)), n=0, 1, 2,... . (20)

So with a suitably chosen c > 0 we obtain the bound

tr e−bh0
= C

.

n=0
e−bln [ C

.

n=0

[ln(n+3)]bc

(n+1/2)bV0/d < . (21)

which concludes the proof.

Observe that for h0 and, thus, for the Hamiltonian ;d
i=1 h0(i) the

density of states can be inferred from Eq. (20), and shows an exponential
growth with the energy. This is origin of the divergence of the trace for
small b in the case of logarithmically increasing potentials.

In the forthcoming proof of BEC at positive temperatures in interact-
ing Bose gases, we shall make use of the following estimate.

Proposition 2.2. Let e−bH0
be trace class for every b > 0, and

suppose that V is bounded below, inf V=Vm. Let jj be the normalised
eigenstate of H0 belonging to the eigenvalue ej. Then

e−bej ||jj ||
2
. [ e−bVm 1 m

2p(
2b
2d/2

(22)

and

||jj ||
2
. [ 1em(ej − Vm)

dp(
2

2d/2

. (23)
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Proof.

e−bej |jj(r)|2 [ C
i

e−bei |ji(r)|2=Or| e−bH0
|rP

=F Pb
00(dw) e−>b

0 V(r+w(s)) ds [ e−bVml−d
b (24)

which, after taking the supremum on the left-hand side, is (22). Multiplying
by ebej and minimizing the right member with respect to b yields (23).

We note that for sufficiently fast increasing potentials H0 is ultracon-
tractive and the normalized eigenstates are uniformly bounded. (4, 5) In par-
ticular, this obviously holds true for a particle confined in a rectangular
domain with Dirichlet, Neumann or periodic boundary conditions. All our
results cover these cases. However, in the present paper we need only the
weaker bound (22) on the eigenfunctions.

3. FREE BOSE GAS IN A DEEP TRAP

N noninteracting bosons in a deep trap are described by the Hamilto-
nian

H0
N= C

N

i=1
H0(i)=TN+ C

N

i=1
V(ri) TN=−

(
2

2m
C
N

i=1
Di. (25)

We can consider H0
N directly in infinite space, because exp(−bH0

N) is a
trace class operator on L2(RdN). Therefore, to perform a thermodynamic
limit it remains sending N to infinity.

Let Z[bH0
N] denote the canonical partition function for N bosons.

We have the following.

Proposition 3.1. The limit

lim
N Q .

ebNe0Z[bH0
N] — e−bF0(b) (26)

exists, and F0(b) is an analytic function of b for any b > 0.

Proof. Let nj \ 0 denote the number of bosons in the jth eigenstate
of H0. Then

Z[bH0
N]= C

{nj}: ; nj=N
e−b ; njej= C

N

NŒ=0
e−b(N − NŒ) e0 C

{nj}j > 0 : ; nj=NŒ

e−b ; njej. (27)
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Therefore

ebNe0Z[bH0
N]= C

{nj}j > 0 : ; nj [ N
e−b ; nj(ej − e0), (28)

so that

lim
N Q .

ebNe0Z[bH0
N]= C

{nj}j > 0 : ; nj < .

e−b ; nj(ej − e0)

=D
.

j=1
C
.

nj=0
e−bnj(ej − e0)=D

.

j=1

1
1 − e−b(ej − e0) (29)

and

bF0(b)= C
.

j=1
ln(1 − e−b(ej − e0)). (30)

To conclude, we need a lemma.

Lemma 3.2. Let |an | < 1 and ;.

n=1 |an | < .. Then ;.

n=1 ln(1 − an) is
absolutely convergent.

Proof. One can choose N such that |an | < 1/2 if n \ N. Then

C
.

n=N
|ln(1 − an)|= C

.

n=N

: C
.

l=1

a l
n

l
: [ C

.

n=N
C
.

l=1

|an | l

l

= C
.

n=N
|an | C

.

l=1

|an | l − 1

l
[ 2 ln 2 C

.

n=N
|an | < .

which proves the lemma.

Because e−bH0
is trace class for any b > 0, the conditions of the lemma

hold for an=exp(−z(en − e0)) if z ¥ C, Re z > 0. Thus, for any E > 0,
;.

n=1 ln(1 − exp(−z(en − e0))) is uniformly absolute convergent in the half-
plane Re z \ E. Since every term is analytic, the sum will be analytic as well.
This finishes the proof of the proposition.

The peculiar feature of the infinite system is clearly shown by Eq. (26).
The total free energy of the gas is

− b−1 ln Z[bH0
N]=Ne0+F0(b)+o(1). (31)

This means that there is no phase transition and the free energy per particle
of the infinite system is e0 at any temperature. Thus, at any b > 0 the gas is
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in a low-temperature phase which is a nonextensive perturbation of the
ground state: All but a vanishing fraction of the particles are in the conden-
sate! Below we make this observation quantitative.

Let PbH0
N

(A) denote the probability of an event A according to the
canonical Gibbs measure. Let NŒ=N − n0, the number of particles in the
excited states of H0. First, notice that in the infinite system the probability
that all the particles are in the ground state is positive at any temperature:
From Eq. (27),

PbH0
N

(NŒ=0)=
e−bNe0

Z[bH0
N]

Q ebF0(b) as N Q . (32)

which tends continuously to zero only when b Q 0. More precise informa-
tions can also be obtained. For an integer m between 0 and N, with Pro-
position 3.1 we find

PbH0
N

(NŒ \ m)=PbH0
N

(NŒ=0) C
{nj}j > 0 : m [ ; nj [ N

e−b ; nj(ej − e0). (33)

A lower bound is obtained by keeping a single term, n1=m, nj=0 for
j > 1:

PbH0
N

(NŒ \ m) \ PbH0
N

(NŒ=0) e−bm(e1 − e0). (34)

If we replace m by any increasing sequence aN, this yields

lim inf
N Q .

1
aN

ln PbH0
N

(NŒ \ aN) \ − b(e1 − e0). (35)

To obtain an upper bound, choose any m with 0 [ m < e1 − e0. Then

PbH0
N

(NŒ \ m)

=PbH0
N

(NŒ=0) C
N

NŒ=m
e−bmNŒ C

{nj}j > 0 : ; nj=NŒ

e−b ; nj(ej − e0 − m)

[ PbH0
N

(NŒ=0) e−bmm D
.

j=1

1
1 − e−b(ej − e0 − m)

=PbH0
N

(NŒ=0) Q(b, m) e−bmm (36)

where Q(b, m) is defined by the last equality. Notice that Q(b, 0)=e−bF0(b).
The inequality has been obtained by first bounding e−bmNŒ above by e−bmm
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and then by extending the summation over NŒ from 0 to infinity. Again, for
m=aN Q .,

lim sup
N Q .

1
aN

ln PbH0
N

(NŒ \ aN) [ − bm. (37)

This being true for all m < e1 − e0, it holds also for m=e1 − e0, so the lower
bound found in (35) is an upper bound as well, and (35) and (37) together
yield

Proposition 3.3. If 0 < aN [ N and aN tends to infinity, then

lim
N Q .

1
aN

ln PbH0
N

(NŒ \ aN)=−b(e1 − e0). (38)

By the Borel–Cantelli lemma, inequality (36) implies that NŒ is finite
with probability 1 when N is infinite. Moreover, its expectation value is
also finite: for any m ¥ (0, e1 − e0) we have

ONŒPbH0
N

[
PbH0

N
(NŒ=0) Q(b, m)
(1 − e−bm)2 (39)

so that

lim
N Q .

ONŒPbH0
N

[ inf
0 < m < e1 − e0

Q(b, m)
Q(b, 0)

1
(1 − e−bm)2 . (40)

More generally, all moments of NŒ remain finite as N Q .:

lim
N Q .

O(NŒ)kPbH0
N

[ inf
0 < m < e1 − e0

Q(b, m)
Q(b, 0)

dk

d(−bm)k

1
1 − e−bm

. (41)

This fact will be used in the proof of Theorem 2.
Let us summarize the results of this section:

Theorem 3.4. N noninteracting bosons in a deep trap with eigen-
energies e0 < e1 [ · · · have a free energy Ne0+F0(b)+o(1), where F0 is an
analytic function of b for any b > 0. There is no phase transition in any
dimension, however, for any d \ 1, the infinite system is in a low-tempera-
ture phase (Tc=.): At any finite temperature, all but a finite expected
number of bosons are in the one-particle ground state.
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The conclusions about Bose–Einstein condensation are not modified if
the ground state of H0 is degenerate. If

e0= · · · =eJ < eJ+1 [ · · · , (42)

we define NŒ=N − (n0+ · · · +nJ). Then, the earlier formulas remain valid
if in the summations and products j > 0 is replaced by j > J, and e1 − e0 is
replaced by eJ+1 − e0. In particular, all moments of NŒ are bounded and we
have a 100% condensation into the finite dimensional subspace of ground
states. This remark is relevant, e.g., for bosons with an internal degree of
freedom (spin).

4. CONDENSATION OF INTERACTING BOSONS

4.1. The Order We Are Looking for

Due to the pioneering work of Penrose (6) and subsequent papers by
Penrose and Onsager (7) and Yang, (8) it is generally understood and agreed
that Bose–Einstein condensation, from a mathematical point of view, is an
intrinsic property of the one-particle reduced density matrix, s1, and means
that the largest eigenvalue of s1, which is equal to its norm, ||s1 ||, is of the
order of N. For the homogeneous gas the equivalence of this physically not
very appealing definition with the existence of an off-diagonal long-range
order, showing up in the coordinate space representation (integral kernel)
of s1, was demonstrated in ref. 7. For a trapped gas it is intuitively more
satisfactory to define BEC as the accumulation of a macroscopic number
of particles in a single-particle state. The proof that this is meaningful,
whether or not there is interaction, and equivalent with ||s1 ||=O(N), is the
subject of this section.

Following the general setting of ref. 8, let s be a density matrix, i.e., a
positive operator of trace 1 acting in HN, where H is a one-particle sepa-
rable Hilbert space. Permutations of the N particles can be defined as
unitary operators in HN, and s is supposed to commute with all of them.
The associated one-particle reduced density matrix, s1, is a positive opera-
tor of trace N in H, obtained by taking the sum of the partial traces of s

over the N − 1-particle subspaces: If {jn}.

n=0 is any orthonormal basis in
H and f and k are any elements of H then

(f, s1k) — C
N

j=1
C

{ik}k ] j

(ji1
· · · jij − 1

fjij+1
· · · jiN

, s ji1
· · · jij − 1

kjij+1
· · · jiN

)

=N C
i2,..., iN

(fji2
· · · jiN

, s kji2
· · · jiN

) (43)
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because of the permutation-invariance of s. In (43) the summation over
each ik is unrestricted and the matrix elements of s are taken with simple
(non-symmetrized) tensor products (é omitted).

Let j0 be any normalized element of H. We define the mean (with
respect to s) number of particles occupying j0 as follows. We complete j0

into an orthonormal basis {jn}.

n=0 of H. In HN we use the product basis

{Fi=ji1
é · · · é jiN

| i=(i1, · · · , iN) ¥ NN}. (44)

To j0 and Fi we assign

n[j0](i) — C
N

j=1
|(j0, jij

)|2=C
j

dij, 0, (45)

which is the number of particles in the state j0 among N particles occupy-
ing the states ji1

,..., jiN
, respectively. We can use (45) to define n[j0] as a

positive operator in HN. Alternately, we can interprete (Fi, sFi) as the
probability of Fi and n[j0] as a random variable over this probability
field. In any case, the mean value of n[j0] with respect to s is

On[j0]Ps — Tr n[j0] s= C
i1,..., iN

C
N

j=1
dij, 0(Fi, sFi)

= C
N

j=1
C
ij

dij, 0 C
{ik}k ] j

(Fi, sFi)=
1
N

C
N

j=1
C
ij

dij, 0(jij
, s1jij

)

= C
.

i=0
di, 0(ji, s1ji)=(j0, s1j0), (46)

an intrinsic quantity independent of the basis. Reading Eq. (46) in the
opposite sense, we find that, whether or not there is interaction, the physi-
cal meaning of (j0, s1j0) is the average number of particles in the single
particle state j0. Since ||s1 ||=sup||j||=1(j, s1j), we obtained the following
result.

Proposition 4.1. There is BEC in the sense that limN Q . ||s1 ||/N > 0
if and only if there exists a macroscopically occupied j0 ¥ H (which may
depend on N), i.e., limN Q .On[j0]Ps/N > 0.

The proposition is valid with obvious modifications also in the
homogeneous case. The choice of the macroscopically occupied single par-
ticle state is not unique. Highest occupation is obtained for the dominant
eigenvector, ks1

, of s1 (the one belonging to the largest eigenvalue), in
which case On[ks1

]Ps=||s1 ||. Any other state having a nonvanishing
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overlap in the limit N Q . with ks1
can serve for proving BEC. We can

even find an infinite orthogonal family of vectors, all having a nonvanish-
ing asymptotic overlap with ks1

. One can speak about a generalized con-
densation (9) only when the occupation of more than one eigenstate of s1

becomes asymptotically divergent. In the noninteracting gas ks1
is just the

ground state of the one-body Hamiltonian.
The homogeneous gas represents a particular case. Namely, ks1

(r)=
kL

k=0(r) — 1/Ld/2 for any translation invariant interaction, if the gas is
confined in a cube of side L and the boundary condition is periodic.
Indeed, in this case s1 is diagonal in momentum representation, therefore
kL

k (r)=e ik · r/Ld/2 are its eigenstates. On the other hand, the integral kernel
Or| s1 |rŒP is positive (now we speak about s ’ exp(−bH) in the bosonic
subspace or s=|YPOY| where Y(r1,..., rN) is a translation invariant posi-
tive symmetric function), and by a suitable generalization of the
Perron–Frobenius theorem (see, e.g., ref. 10) the constant vector must be
the dominant eigenvector. This is presumably the only case when the
ground state of the one-body Hamiltonian remains the dominant eigen-
vector of the one-particle reduced density matrix for the interacting system,
yet there exists no proof of a macroscopic occupation of this state in the
presence of interactions (unless a gap is introduced in the excitation spec-
trum (11)).

In the case of a trapped gas we do not generally know the dominant
eigenvector of s1. However, we can carry through the proof by the use of
the low energy eigenstates of H0.

4.2. Interacting Bosons in a Deep Trap

In this section we ask about condensation of interacting bosons in a
deep trap. Let UN: RdN

Q R be a symmetric function of r1,..., rN which is
bounded below, and define

HN=H0
N+UN. (47)

We can consider HN directly in infinite space, because exp(−bHN) is a
trace class operator on L2(RdN). So as in Section 3, the thermodynamic
limit means N tending to infinity. The canonical partition function will be
denoted by Z[bHN]. The density matrix is

s=P+
Ne−bHN/Z[bHN] (48)

where P+
N=(1/N!) ;p ¥ SN

p is the orthogonal projection to the symmetric
subspace of HN and Z[bHN]=Tr P+

Ne−bHN.
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We want to prove the persistence of BEC in the presence of interac-
tion, that is, the continuity of the low-temperature phase as UN increases
from zero to a finite strength. This will be achieved by proving macroscopic
occupation of at least one low-lying eigenstate of H0, which may depend
on the interaction strength. We cannot expect, and will not obtain, a 100%
condensation because the overlap of any eigenstate of H0 with ks1

must be
smaller than 1. (The 100% condensation (1) into fGP, the minimizer of the
Gross–Pitaevskii functional, found for the ground state of interacting gases
in the dilute limit in locally bounded traps, means that (fGP, ks1

) Q 1 as
N Q .. In this case s=|YPOY|, where Y is the unknown ground state.)

In the proof of the next theorem we use the basis of the H0 eigenstates,
given by H0jj=ejjj, and the symmetric and normalized eigenstates of
H0

N: |nP=|n0, n1,...P is the symmetrized product state of norm 1 containing
nj times the factor jj, where ; nj=N. For the sake of clarity, we restrict
the discussion to the case when the ground state of H0 is nondegenerate,
and use the notation F0 for the (unique) ground state of H0

N, given by
n0=N and nj=0, j > 0. Extension to the case of spin- or spatial degener-
acy is straightforward.

Theorem 4.2. Let

L(U) — lim sup
N Q .

1
N

[(F0, UNF0) − inf UN]. (49)

For any d \ 1 the following hold true.

(i) If L(U) < ., at zero temperature there is Bose–Einstein conden-
sation. Namely, if J \ 0 is the unique integer defined by the inequalities

eJ − e0 [ L(U) < eJ+1 − e0, (50)

for b=. we have

lim inf
N Q .

1
N

C
J

j=0
OnjPbHN

\ 1 −
L(U)

eJ+1 − e0
. (51)

(ii) If UN is a stable integrable pair interaction,

UN(r1,..., rN)= C
1 [ i < j [ N

uN(ri − rj), (52)

with ||uN ||1=O(1/N), then L(U) < . and for any b > 0 there is Bose–
Einstein condensation and (51) holds true.
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We note that in part (i) UN can be any self-adjoint operator in
L2(Rd) é N which is bounded below and leaves the symmetric subspace
invariant.

Proof. In the first part of the proof we apply convexity inequalities
in a similar manner as they were used in ref. 11.

We define a one-parameter family of one-particle Hamiltonians

H0(d)= C
J

j=0
(ej+d) Pj+ C

.

j=J+1
ejPj (53)

where d is a real parameter and Pj is the orthogonal projection onto jj. Let
H0

N(d) be the corresponding Hamiltonian of N noninteracting particles and
HN(d)=H0

N(d)+UN. For d=0 we shall keep the original notation.
Because

C
J

j=0
OnjPbH(0)

N (d)=−
“ ln Z[bH (0)

N (d)]
“(bd)

(54)

and the second derivative is the variance of ;J
j=0 nj, ln Z[bH (0)

N (d)] are
convex (decreasing) functions of bd. Therefore, for any d > 0

C
J

j=0
OnjPbHN

\
1

bd
ln

Z[bHN]
Z[bHN(d)]

C
J

j=0
OnjPbH0

N(d) [
1

bd
ln

Z[bH0
N]

Z[bH0
N(d)]

(55)

Combining (55) with a double application of the Bogoliubov convexity
inequality, (12)

ln
Z[bHN]
Z[bH0

N]
\ − bOUNPbH0

N
ln

Z[bH0
N(d)]

Z[bHN(d)]
\ bOUNPbHN(d), (56)

we find

C
J

j=0
OnjPbHN

\ C
J

j=0
OnjPbH0

N(d) −
1
d

[OUNPbH0
N

−OUNPbHN(d)]

\ On0PbH0
N(d) −

1
d

[OUNPbH0
N

− inf UN]. (57)
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For d < eJ+1 − e0, j0 is the unique ground state of H0(d), and thus the
results of Section 3 remain valid to H0

N(d). At zero temperature the
inequality (57) reads

lim
b Q .

C
J

j=0
OnjPbHN

\ N −
1
d

[(F0, UNF0) − inf UN]. (58)

Dividing by N, taking the liminf as N tends to infinity and then letting d

tend to eJ+1 − e0, we obtain part (i) of the theorem.
Suppose now that the conditions of part (ii) hold true. Stability means

inf UN \ − BN for some constant B. On the other hand,

|(F0, UNF0)|=1N
2
2 :F j0(x)2 uN(x − y) j0(y)2 dx dy :

=1N
2
2 (2p)d/2 :F ûN(q) |j2

0
5(q)|2 dq :

[ 1N
2
2 ||uN ||1 ||j4

0 ||1=O(N), (59)

therefore

L(U) [ 1
2 ||j4

0 ||1 lim sup(N ||uN ||1)+B < .. (60)

Fix J according to (50). Dividing (57) by N, taking the liminf as N tends to
infinity and then letting d tend to eJ+1 − e0, we arrive at

lim inf
N Q .

1
N

C
J

j=0
OnjPbHN

\ 1 −
1

eJ+1 − e0
lim sup

N Q .

1
N

[OUNPbH0
N

− inf UN]. (61)

Here we used (40) to obtain On0PbH0
N(d)/N=1 −ONŒPbH0

N(d)/N Q 1 as N
tends to infinity. Next we prove that for any b > 0

lim
N Q .

1
N

[(F0, UNF0) −OUNPbH0
N

]=0. (62)

Equations (61) and (62) clearly imply (ii).
Let a(x) and a(x)g be the boson field operators, then UN is the restric-

tion of

U=1
2 F a(x)g a(y)g uN(x − y) a(x) a(y) dx dy (63)
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to the N-particle subspace. Denote ai and ag
i the annihilation and creation

operators of a particle in the state ji, respectively. We have

ai=F ji(x) a(x) dx, a(x)= C
.

i=0
aiji(x) (64)

and

U= C
.

i, j, k, l=0
uijkla

g
i ag

j akal (65)

with

uijkl=F ji(x) jj(y) uN(x − y) jk(x) jl(y) dx dy. (66)

Now

On| U |nP=C
i

uiiii
1ni

2
2+C

i < j
(uijij+uijji) ninj (67)

and thus

OUNPbH0
N

=
1
2

C
i

uiiiiOni(ni − 1)PbH0
N

+C
i < j

(uijij+uijji)OninjPbH0
N

=
1
2

u0000On0(n0 − 1)PbH0
N

+RN

=(F0, UNF0) 711 −
NŒ

N
211 −

NŒ

N − 1
28

bH0
N

+RN (68)

where

RN=1
2 C

i > 0
uiiiiOni(ni − 1)PbH0

N
+ C

0 [ i < j
(uijij+uijji)OninjPbH0

N
. (69)

First we estimate the residue RN. Because

max{|uijij |, |uijji |} [ ||ji ||. ||jj ||. ||uN ||1, (70)

|RN | [ ||uN ||1 1 1
2 C

i > 0
||ji ||

2
. Oni(ni − 1)PbH0

N
+2 C

0 [ i < j
||ji ||. ||jj ||. OninjPbH0

N
2 .

(71)
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There is some constant c1(b) such that for any i, j > 0

Oni(ni − 1)PbH0
N

[ c1(b) e−2b(ei − e0)

OninjPbH0
N

[ c1(b) e−b(ei − e0)e−b(ej − e0).
(72)

These inequalities can be shown by direct estimation. Also, both expecta-
tion values can asymptotically be computed by using the asymptotic
(N Q .) factorization of the probability measure,

PbH0
N

({nj}j > 0) £ D
.

j=1
(1 − e−b(ej − e0)) e−b(ej − e0) nj. (73)

With another suitable constant c2(b) we obtain

1
2

C
i > 0

||ji ||
2
. Oni(ni − 1)PbH0

N
+2 C

0 < i < j
||ji ||. ||jj ||. OninjPbH0

N

[ c2(b) 1 C
.

i=1
||ji ||. e−b(ei − e0)22

[ c2(b) eb(e0 − Vm) 1 m
2p(

2b
2d/2

(tr e−b

2 (H0 − e0) − 1)2 — c̃(b). (74)

In the last inequality we used the bound

||ji ||. e−b

2 (ei − e0) [ e
b

2 (e0 − Vm) 1 m
2p(

2b
2d/4

(75)

obtained in Proposition 2.2. The remaining term

2 ||j0 ||. C
.

j=1
||jj ||. On0njPbH0

N
[ 2N ||j0 ||. C

.

j=1
||jj ||. OnjPbH0

N
[ c(b) N (76)

because for j > 0, OnjPbH0
N

’ e−b(ej − e0). Hence,

1
N

|RN | [ ||uN ||1 1c(b)+
c̃(b)

N
2
Q 0 as N Q .. (77)

Therefore,

lim
N Q .

1
N

[(F0, UNF0) −OUNPbH0
N

]

= lim
N Q .

1
N

(F0, UNF0) 51 −711 −
NŒ

N
211 −

NŒ

N − 1
28

bH0
N

6=0 (78)
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because the difference in the square bracket is of order 1/N, cf. (41), and
its prefactor is of order 1, see (59). This finishes the proof of the theorem.

Notice that in the proof of (77) and (78) we have used only
||uN ||1=o(1). The condition of integrability of uN could be relaxed. For
example, if u is a bounded function (or u is integrable and bounded below),
the theorem holds for uN=(1/N) u, which is a mean-field interaction.
More interesting examples are provided by scaled interactions.

Corollary 4.3. Let u: Rd
Q R be an integrable nonnegative function.

Suppose we are given two positive sequences aN and bN satisfying the con-
dition

S — sup
N

bNa−d
N N < .. (79)

Then for any b > 0 there is Bose–Einstein condensation for the interaction

uN(x)=bNu(aNx). (80)

Proof. UN is an integrable stable pair interaction (inf UN=0) and

||uN ||1=bNa−d
N ||u||1 [

S ||u||1
N

. (81)

Thus, the conditions of part (ii) of the theorem are verified.

Remarks.

1. If aN is constant, we obtain the mean-field interaction. If aN is
strictly monotonous, it can be inverted and, hence, bN may depend on N
only via aN. For example, aN=Ng and bN=ad − 1/g

N satisfy (79).

2. If the scattering length of u is a and bN=a2
N then the scattering

length of uN is a/aN. To see this, we recall (cf. ref. 13) the definition of the
scattering length:

Let V be a spherical finite-range potential such that − (
2

2m D+V has no
negative or zero energy bound state. Then the Schrödinger equation
written for zero energy,

−
(

2

2m
Df(x)+V(x) f(x)=0 (82)
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has a (up to constant multipliers) unique spherical sign-keeping solution,
f0. If r=|x| > R0, the range of the potential, this solution reads

f0(x)=˛1 − (a/r)d − 2 if d ] 2
ln(r/a) if d=2

(83)

with some a [ R0. We call a the scattering length of V and f0 the defining
solution. To obtain the scattering length of a pair interaction u one has to
solve (82) with V=u/2, the 1/2 accounting for the reduced mass. For a
nonnegative integrable infinite range potential (pair interaction) a finite
scattering length still can be defined by truncating the potential at a finite
R0 and taking the (finite) limit of a(R0) as R0 Q ., see Appendix A of
ref. 13.

Suppose now that the scattering length of u is a. What is the scattering
length of uN, given by (80)? This is not always easy to tell because the
defining solution for uN is generally in no simple relation with that one for
u. However, from Eqs. (82) and (83) it is easily seen that the defining solu-
tions of u and

ua(x)=a2u(ax) (84)

are related by scaling, f0[ua](x)=f0[u](ax), and therefore the scattering
length of ua is a/a.

3. If aN tends to infinity, the scattering length of uN tends to zero,
and the operator − (

2

2m D+uN/2 converges in norm resolvent sense to the
one-particle kinetic energy operator. For this to happen, in two and three
dimensions uN \ 0 is essential. Indeed, in two and three dimensions with aN

diverging and bN chosen so that (79) is respected one could define point
interactions, that is, self-adjoint extensions of the symmetric operator
− (

2

2m D|C.

0 (R
d − {0}) with a nonvanishing scattering length. (14) However, it turns

out that for uN \ 0 the only extension is the kinetic energy operator (cf.
Theorems 1.2.5 and 5.5 of ref. 14). The result of Theorem 2 and its
corollary can be nontrivial because the scattering length vanishes in
conjunction with a diverging particle number.

4. In three dimensions the Gross–Pitaevskii scaling limit is obtained
by fixing NaN, where aN is the scattering length of the pair interaction,
while N Q .. To show BEC, we choose bN=a2

N and aN 3 N, so that
uN=uaN

with scattering length aN=a1/N. Observe that ||uaN
||1=N−1 ||u||1

for GP scaling in three dimensions.
5. Let HN[V, u] be an N-particle Hamiltonian with an external

potential V and pair interaction u. Then

bHN[V, a2
Nu(aN · )] 5 ba2

NHN[a−2
N V(a−1

N · ), u]. (85)

394 Sütő



If aN tends to infinity, the scaled temperature (ba2
N)−1 goes to zero and the

trap opens. Lieb and Seiringer (1) obtained results on the limit of the
sequence of ground states of (85). Theorem 2 refers to the limit of the
thermal equilibrium states generated by (85). It is not obvious that the two
limits define the same state for N=.. In Theorem 2 there is a first hint
that this may hold true: By proving Eq. (62), we obtain the same lower
bound (51) on the density of the condensate at positive temperatures as at
zero temperature.

6. In two dimensions the scattering length of uN is always smaller
than a/aN, the scattering length of uaN

, cf. (84). In general,

uN(x)=bNa−2
N uaN

(x) [ SN−1ad − 2
N uaN

(x). (86)

In particular, in two dimensions uN [ (S/N) uaN
. Because for u \ 0 the

scattering length of lu increases with l > 0, the scattering length of any
admissible uN is smaller than that of uaN

. We note that in two dimensions
||ua ||1=||u||1, independently of a.

7. The sequence aN may also decrease with N, provided that bN

decreases sufficiently rapidly, see, e.g., Remark 1 for g < 0. A curious
example in one dimension is aN=N−1 and bN=N−2. Thus, the scattering
length increases proportional to N, instead of going to zero. According to
Eq. (85), this case corresponds to closing the trap and sending the temper-
ature to infinity—just the opposite of the Gross–Pitaevskii limit in three
dimensions.

8. Theorem 2 is valid for a gas confined in a box with periodic,
Neumann or Dirichlet boundary conditions. The geometric confinement on
a d-torus is interesting because the eigenstates of the one-particle Hamil-
tonian are eigenstates of the one-particle reduced density matrix as well, see
Section 4.1. Now the inequality (51) implies that at least j0 is macroscopi-
cally occupied and suggests that OnjP for some small positive j can also be
of order N. This would mean a kind of generalized Bose–Einstein conden-
sation, in contrast to the 100% condensation into a single state, obtained
for locally bounded trap potentials. (1)

9. For bosons in a locally bounded potential trap scaling of a non-
negative interaction is unavoidable in order that condensation takes place
into a fixed localized state j. Particles in j are confined in a bounded box
with a probability arbitrarily close to 1. An unscaled nonnegative interac-
tion would push the particles outside this box and, hence, out of j. In
effect, with increasing N the system could diminish its interaction energy at
the expense of the potential energy, by letting the particles ‘‘climb’’ a little
bit higher up in the potential well.
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